

HONOLULU 07:23:49 25 Feb 2018 WASH.D.C. 12:23:49 25 Feb 2018 ZULU 17:23:49 25 Feb 2018 NAIROBI 20:23:49 25 Feb 2018 BANGKOK 00:23:49 26 Feb 2018 TOKYO 02:23:49 26 Feb 2018

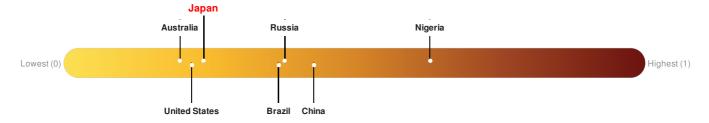
Region Selected » Lower Left Latitude/Longitude: 34.5905 N°, 138.7455 E° Upper Right Latitude/Longitude: 40.5905 N°, 144.7455 E°

Situational Awareness

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Current Hazards:

Recent	Recent Earthquakes								
Event	Severity	Date (UTC)	Magnitude	Depth (km)	Location	Lat/Long			
	!	25-Feb-2018 16:50:35	5.6	30.77	66km E of Namie, Japan	37.59° N / 141.75° E			


Active	Active Extreme Temperature						
Event	Severity	Date (UTC)	Name	Lat/Long			
	0	22-Feb-2018 20:34:17	Extreme Cold - Japan	36.98° N / 139.14° E			

Source: PDC

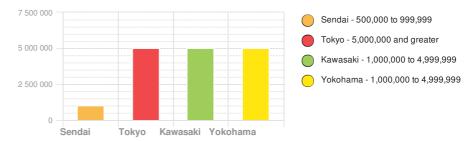
Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Japan ranks 140 out of 165 countries assessed for Lack of Resilience. Japan is less resilient than 16% of countries assessed. This indicates that Japan has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

Regional Overview

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.


Population Data:

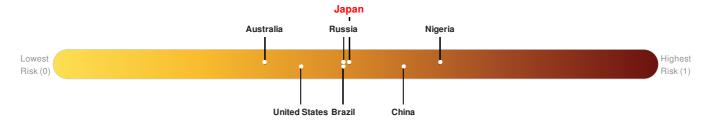
2011

Total: 52, 998, 920

Max Density: 41, 427(ppl/km²)

Populated Areas:

Source: iSciences

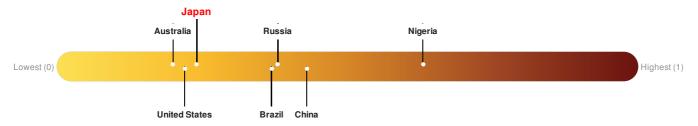

Risk & Vulnerability

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Multi Hazard Risk Index:

The Multi Hazard Risk index assesses the likelihood of losses or disruptions to a country's normal function due to the interaction between exposure to multiple hazards (tropical cyclone winds, earthquake, flood and tsunami), socioeconomic vulnerability, and coping capacity

Multi-Hazard Exposure Japan ranks 81 out of 165 countries assessed for Multi Hazard Risk. Japan has a Multi Hazard Risk higher than 51% of countries assessed. This indicates that Japan has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

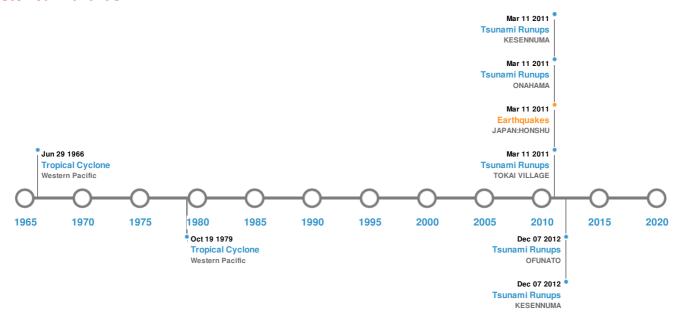


Source: PDC

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Japan ranks 140 out of 165 countries assessed for Lack of Resilience. Japan is less resilient than 16% of countries assessed. This indicates that Japan has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.



Source: PDC

Historical Hazards

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Historical Hazards:

Earthquakes:

5 Largest Earthquakes (Resulting in significant damage or deaths)								
Event	Date (UTC)	Magnitude	Depth (Km)	Location	Lat/Long			
*	11-Mar-2011 05:46:24	9.00	29	JAPAN: HONSHU	38.3° N / 142.37° E			
*	05-Jun-1898 00:00:00	8.70	60	JAPAN: OFF EAST COAST HONSHU	38° N / 143° E			
*	13-Jul-0869 00:00:00	8.60		JAPAN: SANRIKU	38.5° N / 143.8° E			
♦	02-Mar-1933 00:17:00	8.40	10	JAPAN: SANRIKU	39.1° N / 144.7° E			
*	19-Feb-1897 00:23:00	8.30	33	JAPAN: SANRIKU	38° N / 142° E			

Source: Earthquakes

Volcanic Eruptions:

5 Largest Volcanic Eruptions (Last updated in 2000)							
Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long		
♦	BANDAI	15-Jul-1888 00:00:00	4.00	HONSHU-JAPAN	37.6° N / 140.08° E		
	NASU	01-Jul-1881 00:00:00	4.00	HONSHU-JAPAN	37.12° N / 139.97° E		

Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long
	IWATE	28-Feb-1686 00:00:00	4.00	HONSHU-JAPAN	39.85° N / 141° E
	OSHIMA	01-Jan-1338 00:00:00	4.00	IZU IS-JAPAN	34.73° N / 139.38° E
	OSHIMA	01-Jan-1200 00:00:00	4.00	IZU IS-JAPAN	34.73° N / 139.38° E

Source: Volcanoes

Tsunami Runups:

5 Large	5 Largest Tsunami Runups								
Event	Date (UTC)	Country	Runup (m)	Deaths	Location	Lat/Long			
\$	07-Dec-2012 00:00:00	JAPAN	-	-	KESENNUMA	-/-			
♦	07-Dec-2012 00:00:00	JAPAN	-	-	OFUNATO	-/-			
♦	11-Mar-2011 05:54:24	JAPAN	-	1023	KESENNUMA	-/-			
\$	11-Mar-2011 05:52:24	JAPAN	-	-	ONAHAMA	-/-			
\$	11-Mar-2011 00:00:00	JAPAN	-	-	TOKAI VILLAGE	-/-			

Source: <u>Tsunamis</u>

Tropical Cyclones:

5 Largest Tropical Cyclones							
Event	Name	Start/End Date(UTC)	Max Wind Speed (mph)	Min Pressure (mb)	Location	Lat/Long	
	NANCY	07-Sep-1961 18:00:00 - 17-Sep-1961 12:00:00	213	No Data	Western Pacific	31.48° N / 146.6° E	
	VIOLET	04-Oct-1961 06:00:00 - 11-Oct-1961 12:00:00	207	No Data	Western Pacific	30.93° N / 142.35° E	
	IDA	20-Sep-1958 18:00:00 - 27-Sep-1958 18:00:00	201	No Data	Western Pacific	26.88° N / 140.85° E	
	KIT	22-Jun-1966 06:00:00 - 29-Jun-1966 18:00:00	196	No Data	Western Pacific	26.45° N / 141.6° E	
	TIP	04-Oct-1979 06:00:00 - 19-Oct-1979 18:00:00	190	No Data	Western Pacific	23.8° N / 141.4° E	

Source: Tropical Cyclones

Disclosures

The information and data contained in this product are for reference only. Pacific Disaster Center (PDC) does not guarantee the accuracy of this data. Refer to original sources for any legal restrictions. Please refer to PDC Terms of Use for PDC generated information and products. The names, boundaries, colors, denominations and any other information shown on the associated maps do not imply, on the part of PDC, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

^{*} As defined by the source (<u>Dartmouth Flood Observatory</u>, University of Colorado), Flood Magnitude = LOG(Duration x Severity x Affected Area). Severity classes are based on estimated recurrence intervals and other criteria.

