

HONOLULU 19:52:02 13 Aug 2018 WASH.D.C. 01:52:02 14 Aug 2018 LA PAZ 01:52:02 14 Aug 2018 ZULU **05:52:02** 14 Aug 2018 NAIROBI 08:52:02 14 Aug 2018 BANGKOK 12:52:02 14 Aug 2018

Region Selected » Lower Left Latitude/Longitude: -22.604 N°, -72.2794 E° Upper Right Latitude/Longitude: -16.604 N°, -66.2794 E°

Situational Awareness

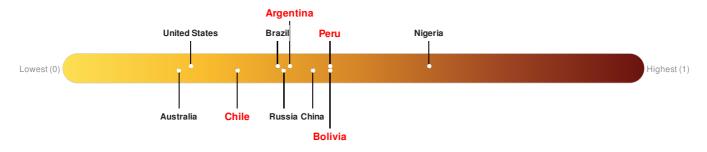
Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Current Hazards:

Source: PDC

Recent Earthquakes							
Event	Severity	Date (UTC)	Magnitude	Depth (km)	Location	Lat/Long	
	0	14-Aug-2018 05:51:30	5.1	99.82	113km NE of Iquique, Chile	19.6° S / 69.28° W	

Lack of Resilience Index:


The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Argentina ranks 92 out of 165 countries assessed for Lack of Resilience. Argentina is less resilient than 45% of countries assessed. This indicates that Argentina has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

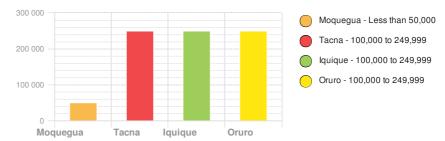
Bolivia ranks 64 out of 165 countries assessed for Lack of Resilience. Bolivia is less resilient than 62% of countries assessed. This indicates that Bolivia has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Chile ranks 127 out of 165 countries assessed for Lack of Resilience. Chile is less resilient than 24% of countries assessed. This indicates that Chile has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

Peru ranks 64 out of 165 countries assessed for Lack of Resilience. Peru is less resilient than 62% of countries assessed. This indicates that Peru has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Regional Overview

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.


Population Data:

2011

Total: 2, 518, 413

Max Density: **50**, **158**(ppl/km²)

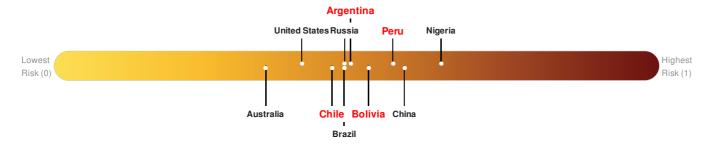
Populated Areas:

Source: iSciences

Risk & Vulnerability

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Multi Hazard Risk Index:


The Multi Hazard Risk index assesses the likelihood of losses or disruptions to a country's normal function due to the interaction between exposure to multiple hazards (tropical cyclone winds, earthquake, flood and tsunami), socioeconomic vulnerability, and coping capacity

Multi-Hazard Exposure Argentina ranks 81 out of 165 countries assessed for Multi Hazard Risk. Argentina has a Multi Hazard Risk higher than 51% of countries assessed. This indicates that Argentina has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

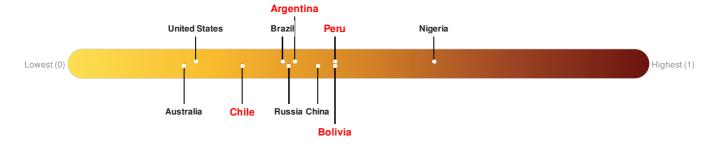
Multi-Hazard Exposure Bolivia ranks 66 out of 165 countries assessed for Multi Hazard Risk. Bolivia has a Multi Hazard Risk higher than 60% of countries assessed. This indicates that Bolivia has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Chile ranks 103 out of 165 countries assessed for Multi Hazard Risk. Chile has a Multi Hazard Risk higher than 38% of countries assessed. This indicates that Chile has less likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Peru ranks 40 out of 165 countries assessed for Multi Hazard Risk. Peru has a Multi Hazard Risk higher than 76% of countries assessed. This indicates that Peru has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Source: PDC

Lack of Resilience Index:

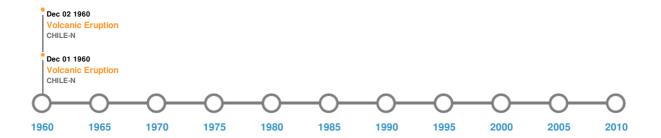

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Argentina ranks 92 out of 165 countries assessed for Lack of Resilience. Argentina is less resilient than 45% of countries assessed. This indicates that Argentina has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

Bolivia ranks 64 out of 165 countries assessed for Lack of Resilience. Bolivia is less resilient than 62% of countries assessed. This indicates that Bolivia has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Chile ranks 127 out of 165 countries assessed for Lack of Resilience. Chile is less resilient than 24% of countries assessed. This indicates that Chile has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

Peru ranks 64 out of 165 countries assessed for Lack of Resilience. Peru is less resilient than 62% of countries assessed. This indicates that Peru has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.



Source: PDC

Historical Hazards

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Historical Hazards:

Earthquakes:

5 Largest Earthquakes (Resulting in significant damage or deaths)							
Event	Date (UTC)	Magnitude	Depth (Km)	Location	Lat/Long		
*	06-Feb-1716 00:00:00	8.80	40	PERU: PUEBLO DE TORATA IN TACNA	17.2° S / 71.2° W		
*	13-Aug-1868 00:21:00	8.50	25	CHILE: ARICA	18.6° S/71° W		
*	24-Nov-1604 00:18:00	8.50	30	PERU: AREQUIPA; CHILE: ARICA	17.88° S / 70.94° W		
	10-May-1877 00:00:00	8.30	40	CHILE: OFF NORTH COAST	19.6° S / 70.2° W		
*	26-Dec-1906 00:06:00	7.90	60	CHILE: OFF NORTH COAST	18° S / 71° W		

Source: Earthquakes

Volcanic Eruptions:

5 Largest Volcanic Eruptions (Last updated in 2000)						
Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long	
♦	HUAYNAPUTINA	19-Feb-1600 00:00:00	4.00	PERU	16.61° S / 70.85° W	
	TUTUPACA	30-Mar-1802 00:00:00	3.00	PERU	17.02° S / 70.36° W	

Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long
	SAN PEDRO	02-Dec-1960 00:00:00	2.00	CHILE-N	21.88° S / 68.4° W
♦	GUALLATIRI	01-Dec-1960 00:00:00	2.00	CHILE-N	18.41° S / 69.16° W
♦	GUALLATIRI	15-Jul-1959 00:00:00	2.00	CHILE-N	18.41° S / 69.16° W

Source: Volcanoes

Tsunami Runups:

5 Largest Tsunami Runups						
Event	Date (UTC)	Country	Runup (m)	Deaths	Location	Lat/Long
\$	10-May-1877 01:05:00	CHILE	24	-	TOCOPILLA	22.08° S/70.17° W
\$	10-May-1877 01:14:00	CHILE	18	-	HUANILLOS	21.2° S/70.09° W
♦	13-Aug-1868 21:39:00	CHILE	18	-	ARICA	18.47° S/70.33° W
\$	13-Aug-1868 22:00:00	CHILE	12	150	IQUIQUE	20.22° S/70.17° W
\$	13-Aug-1868 00:00:00	PERU	12	-	ISLAY	17° \$/72.1° W

Source: <u>Tsunamis</u>

Disclosures

* As defined by the source (<u>Dartmouth Flood Observatory</u>, University of Colorado), Flood Magnitude = LOG(Duration x Severity x Affected Area). Severity classes are based on estimated recurrence intervals and other criteria.

The information and data contained in this product are for reference only. Pacific Disaster Center (PDC) does not guarantee the accuracy of this data. Refer to original sources for any legal restrictions. Please refer to PDC Terms of Use for PDC generated information and products. The names, boundaries, colors, denominations and any other information shown on the associated maps do not imply, on the part of PDC, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

© 2015-2018 Pacific Disaster Center (PDC) – All rights reserved. Commercial use is permitted only with explicit approval of PDC.