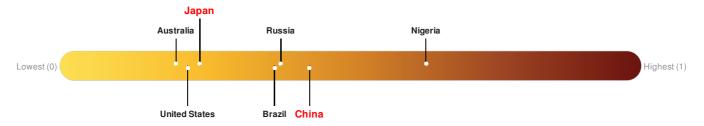
HONOLULU 04:40:08 22 Nov 2017 WASH.D.C. 09:40:08 22 Nov 2017 ZULU 14:40:08 22 Nov 2017 NAIROBI 17:40:08 22 Nov 2017 BANGKOK 21:40:08 22 Nov 2017 TAIPEI 22:40:08 22 Nov 2017

Region Selected » Lower Left Latitude/Longitude: 20.5111 N°, 117.6971 E° Upper Right Latitude/Longitude: 26.5111 N°, 123.6971 E°

Situational Awareness

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Current Hazards:


Recent Earthquakes							
Event	Severity	Date (UTC)	Magnitude	Depth (km)	Location	Lat/Long	
	1	22-Nov-2017 14:39:44	5.1	14.58	25km E of Jiayi Shi, Taiwan	23.51° N / 120.7° E	

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

China ranks 82 out of 165 countries assessed for Lack of Resilience. China is less resilient than 51% of countries assessed. This indicates that China has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

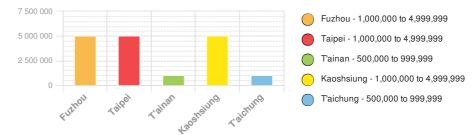
Japan ranks 140 out of 165 countries assessed for Lack of Resilience. Japan is less resilient than 16% of countries assessed. This indicates that Japan has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

Source: PDC

Source: PDC

Regional Overview

apply for access, please register here. Validation of registration information may take 24-48 hours.


Population Data:

2011

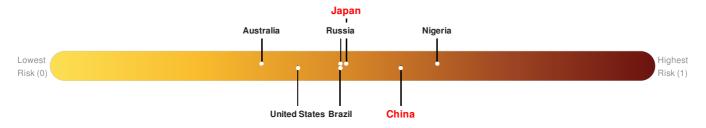
Total: 44, 704, 380

Max Density: 92, 175(ppl/km²)

Populated Areas:

Source: iSciences

Risk & Vulnerability

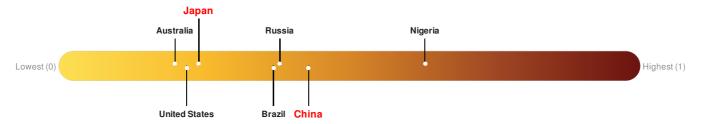

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Multi Hazard Risk Index:

The Multi Hazard Risk index assesses the likelihood of losses or disruptions to a country's normal function due to the interaction between exposure to multiple hazards (tropical cyclone winds, earthquake, flood and tsunami), socioeconomic vulnerability, and coping capacity

Multi-Hazard Exposure China ranks 32 out of 165 countries assessed for Multi Hazard Risk. China has a Multi Hazard Risk higher than 81% of countries assessed. This indicates that China has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Japan ranks 81 out of 165 countries assessed for Multi Hazard Risk. Japan has a Multi Hazard Risk higher than 51% of countries assessed. This indicates that Japan has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

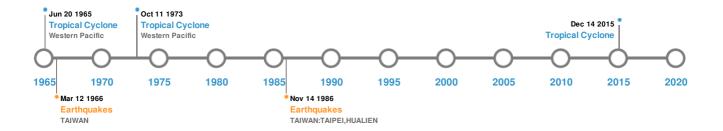

Source: PDC

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

China ranks 82 out of 165 countries assessed for Lack of Resilience. China is less resilient than 51% of countries assessed. This indicates that China has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Japan ranks 140 out of 165 countries assessed for Lack of Resilience. Japan is less resilient than 16% of countries assessed. This indicates that Japan has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.



Source: PDC

Historical Hazards

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Historical Hazards:

Earthquakes:

5 Largest Earthquakes (Resulting in significant damage or deaths)								
Event	Date (UTC)	Magnitude	Depth (Km)	Location	Lat/Long			
*	12-Mar-1966 00:16:00	8.00	48	TAIWAN	24.1° N / 122.6° E			
*	05-Jun-1920 00:04:00	8.00	-	TAIWAN	23.5° N / 122.7° E			
*	29-Dec-1604 00:00:00	8.00	-	CHINA: FUJIAN PROVINCE: OFF COAST	25° N / 119.5° E			
*	14-Nov-1986 00:21:00	7.80	34	TAIWAN: TAIPEI, HUALIEN	23.9° N / 121.57° E			
*	12-Apr-1910 00:00:00	7.80	200	TAIWAN	25.5° N / 122.5° E			

Source: Earthquakes

Volcanic Eruptions:

5 Largest Volcanic Eruptions (Last updated in 2000)						
Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long	
	UNNAMED	15-Jan-1854 00:00:00	2.00	TAIWAN-E OF	21.83° N / 121.18° E	
	UNNAMED	29-Oct-1853 00:00:00	2.00	TAIWAN-E OF	24° N / 121.83° E	

Source: Volcanoes

Tsunami Runups:

5 Largest Tsunami Runups							
Event	Date (UTC)	Country	Runup (m)	Deaths	Location	Lat/Long	
\$	09-Aug-1792 00:00:00	TAIWAN	10	-	LUERMEN, TAINAN CITY	22.97° N / 120.17° E	
\$	22-May-1960 20:30:00	TAIWAN	1.1	-	KEELUNG	25.15° N / 121.75° E	
\$	06-May-1917 00:00:00	TAIWAN	0.5	-	KEELUNG	25.15° N / 121.75° E	
\$	22-Oct-1951 00:00:00	TAIWAN	0.3	-	HUALIEN	23.97° N / 121.62° E	
\$	13-Feb-1963 00:00:00	TAIWAN	0.2	-	HUALIEN	23.97° N / 121.62° E	

Source: <u>Tsunamis</u>

Tropical Cyclones:

5 Largest Tropical Cyclones							
Event	Name	Start/End Date(UTC)	Max Wind Speed (mph)	Min Pressure (mb)	Location	Lat/Long	
	JOAN	25-Aug-1959 12:00:00 - 31-Aug-1959 12:00:00	196	No Data	Western Pacific	22.51° N / 130° E	
	SIXTEEN	10-Sep-2016 03:00:00 - 14-Sep-2016 21:00:00	190	-		22.86° N / 120.4° E	
	GRACE	29-Aug-1958 18:00:00 - 05-Sep-1958 06:00:00	190	No Data	Western Pacific	22.63° N / 131.45° E	
	NORA	01-Oct-1973 06:00:00 - 11-Oct-1973 00:00:00	184	No Data	Western Pacific	18.08° N / 126.45° E	
	DINAH	12-Jun-1965 12:00:00 - 20-Jun-1965 12:00:00	184	No Data	Western Pacific	23.88° N / 132.2° E	

Source: Tropical Cyclones

Disclosures

The information and data contained in this product are for reference only. Pacific Disaster Center (PDC) does not guarantee the accuracy of this data. Refer to original sources for any legal restrictions. Please refer to PDC Terms of Use for PDC generated information and products. The names, boundaries, colors, denominations and any other information shown on the associated maps do not imply, on the part of PDC, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

^{*} As defined by the source (<u>Dartmouth Flood Observatory</u>, University of Colorado), Flood Magnitude = LOG(Duration x Severity x Affected Area). Severity classes are based on estimated recurrence intervals and other criteria.