

HONOLULU 07:40:28 12 Aug 2018 WASH.D.C. 13:40:28 12 Aug 2018 ZULU 17:40:28 12 Aug 2018 NAIROBI 20:40:28 12 Aug 2018 BANGKOK 00:40:28 13 Aug 2018 PALAU 02:40:28 13 Aug 2018

Region Selected » Lower Left Latitude/Longitude: -0.2814000000000001 N*, 125.0548 E* Upper Right Latitude/Longitude: 5.7186 N*, 131.0548 E*

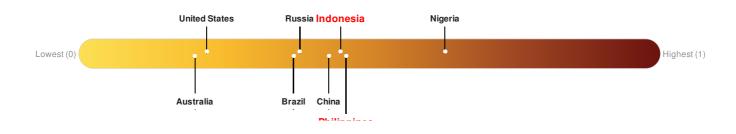
Situational Awareness

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Current Hazards:

Recent	Recent Earthquakes								
Event	Severity	Date (UTC)	Magnitude	Depth (km)	Location	Lat/Long			
	0	12-Aug-2018 17:39:49	5.4	47.78	109km N of Tobelo, Indonesia	2.72° N / 128.05° E			

Active	Active Volcanoes									
Event	Severity	Last Updated (UTC)	Name	Region	Primary Observatory	Activity	More Information	Lat/Long		
	1	29-Sep-2009 02:19:39	Volcano - Dukono, Indonesia	-	-	-	-	1.68° N / 127.88° E		


Source: PDC

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Indonesia ranks 71 out of 165 countries assessed for Lack of Resilience. Indonesia is less resilient than 57% of countries assessed. This indicates that Indonesia has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Philippines ranks 64 out of 165 countries assessed for Lack of Resilience. Philippines is less resilient than 62% of countries assessed. This indicates that Philippines has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Regional Overview

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Population Data:

2011

Total: 1, 200, 963

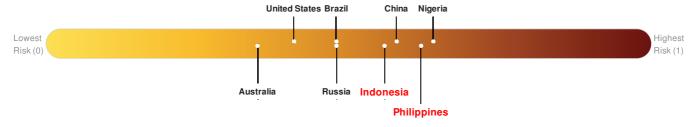
Max Density: 88, 816(ppl/km²)

Populated Areas:

No significant land or population areas exist within the current map extent. Please use http://atlas.pdc.org/atlas/ for dynamic mapping capabilities.

Source: iSciences

Risk & Vulnerability

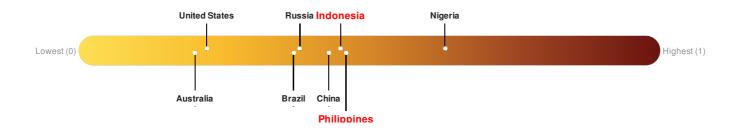

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Multi Hazard Risk Index:

The Multi Hazard Risk index assesses the likelihood of losses or disruptions to a country's normal function due to the interaction between exposure to multiple hazards (tropical cyclone winds, earthquake, flood and tsunami), socioeconomic vulnerability, and coping capacity

Multi-Hazard Exposure Indonesia ranks 40 out of 165 countries assessed for Multi Hazard Risk. Indonesia has a Multi Hazard Risk higher than 76% of countries assessed. This indicates that Indonesia has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Philippines ranks 16 out of 165 countries assessed for Multi Hazard Risk. Philippines has a Multi Hazard Risk higher than 91% of countries assessed. This indicates that Philippines has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

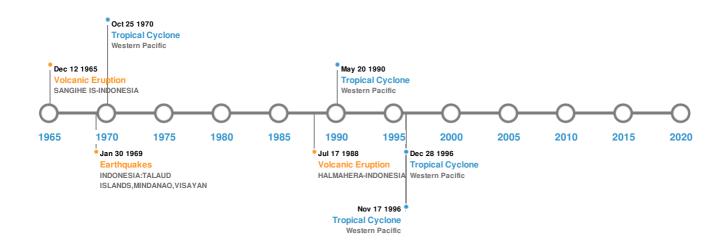

Source: PDC

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

Indonesia ranks 71 out of 165 countries assessed for Lack of Resilience. Indonesia is less resilient than 57% of countries assessed. This indicates that Indonesia has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Philippines ranks 64 out of 165 countries assessed for Lack of Resilience. Philippines is less resilient than 62% of countries assessed. This indicates that Philippines has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.


.

Source: PDC

Historical Hazards

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Historical Hazards:

Earthquakes:

5 Largest Earthquakes (Resulting in significant damage or deaths)								
Event	Date (UTC)	Magnitude	Depth (Km)	Location	Lat/Long			
*	15-Aug-1918 00:12:00	8.30	33	PHILIPPINES: MINDANAO: COTABATO	5.4° N / 125.2° E			
*	06-Sep-1889 00:00:00	8.00	-	N. MOLUCCAS ISLANDS, INDONESIA	1° N / 126.25° E			
♦	30-Jan-1969 00:10:00	7.90	70	INDONESIA: TALAUD ISLANDS,MINDANAO, VISAYAN	4.8° N / 127.4° E			
*	14-Mar-1913 00:08:00	7.90	-	INDONESIA: SANGIHE ISLAND	4.5° N / 126.5° E			
	25-Jun-1907 00:17:00	7.90	200	INDONESIA: DJAILOLO GILOLO	1° N / 127° E			

Source: Earthquakes

Volcanic Eruptions:

5 Largest Volcanic Eruptions (Last updated in 2000)								
Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long			
♦	AWU	03-Jan-1641 00:00:00	5.00	SANGIHE IS-INDONESIA	3.67° N / 125.5° E			
	MAKIAN	17-Jul-1988 00:00:00	4.00	HALMAHERA-INDONESIA	0.32° N / 127.4° E			

Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long	
	AWU	12-Aug-1966 00:00:00	4.00	SANGIHE IS-INDONESIA	3.67° N / 125.5° E	
♦	GAMALAMA	10-May-1687 00:00:00	4.00	HALMAHERA-INDONESIA	0.8° N / 127.32° E	
	GAMALAMA	01-Sep-1686 00:00:00	4.00	HALMAHERA-INDONESIA	0.8° N / 127.32° E	

Source: Volcanoes

Tsunami Runups:

5 Largest Tsunami Runups								
Event	Date (UTC)	Country	Runup (m)	Deaths	Location	Lat/Long		
\$	02-Mar-1871 00:00:00	INDONESIA	25	277	TAHULANDAG I., MOLUCCAS	2.38° N / 125.39° E		
♦	29-Sep-1899 00:00:00	INDONESIA	9	-	LAIMU	1.37° N / 125.08° E		
♦	28-Jun-1859 00:00:00	INDONESIA	9	-	HALMAHERA, W. COAST	0.8° N / 127.6° E		
\$	29-Mar-1907 00:00:00	INDONESIA	4	-	KARAKELONG ISLAND, TALAUD ISLANDS	4.15° N / 126.48° E		
\$	06-Sep-1889 00:00:00	INDONESIA	4	-	KEMA, TERNATE ISLAND	1.38° N / 125.07° E		

Source: <u>Tsunamis</u>

Tropical Cyclones:

5 Largest Tropical Cyclones								
Event	Name	Start/End Date(UTC)	Max Wind Speed (mph)	Min Pressure (mb)	Location	Lat/Long		
	KATE	14-Oct-1970 12:00:00 - 25-Oct-1970 12:00:00	150	No Data	Western Pacific	10.06° N / 123.7° E		
	MARIAN	09-May-1990 06:00:00 - 20-May-1990 06:00:00	104	No Data	Western Pacific	15.64° N / 125.3° E		
	ERNIE	04-Nov-1996 18:00:00 - 17-Nov-1996 00:00:00	58	No Data	Western Pacific	12.7° N / 117.65° E		
	FRAN	02-Feb-1962 06:00:00 - 06-Feb-1962 06:00:00	52	No Data	Western Pacific	7.32° N / 129° E		
	GREG	24-Dec-1996 18:00:00 - 28-Dec-1996 06:00:00	46	No Data	Western Pacific	4.53° N / 121.65° E		

Source: Tropical Cyclones

Disclosures

The information and data contained in this product are for reference only. Pacific Disaster Center (PDC) does not guarantee the accuracy of this data. Refer to original sources for any legal restrictions. Please refer to PDC Terms of Use for PDC generated information and products. The names, boundaries, colors, denominations and any other information shown on the associated maps do not imply, on the part of PDC, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

^{*} As defined by the source (<u>Dartmouth Flood Observatory</u>, University of Colorado), Flood Magnitude = LOG(Duration x Severity x Affected Area). Severity classes are based on estimated recurrence intervals and other criteria.

© 2015-2018 Pacific Disaster Center (PDC) – All rights reserved. Commercial use is permitted only with explicit approval of PDC.