

HONOLULU 09:26:45 21 Jan 2018 MANAGUA 13:26:45 21 Jan 2018 WASH.D.C. 14:26:45 21 Jan 2018 ZULU 19:26:45 21 Jan 2018 NAIROBI 22:26:45 21 Jan 2018 BANGKOK 02:26:45 22 Jan 2018

Region Selected » Lower Left Latitude/Longitude: 8.2803 N°, -89.9982 E° Upper Right Latitude/Longitude: 14.2803 N°, -83.9982 E'

Situational Awareness

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

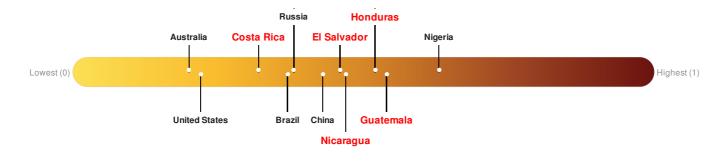
Current Hazards:

Source: PDC

Recent Earthquakes									
Event	Severity	Date (UTC)	Magnitude	Depth (km)	Location	Lat/Long			
	0	21-Jan-2018 19:26:18	5	48.65	76km SW of Masachapa, Nicaragua	11.28° N/87° W			

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.


Costa Rica ranks 120 out of 165 countries assessed for Lack of Resilience. Costa Rica is less resilient than 28% of countries assessed. This indicates that Costa Rica has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

El Salvador ranks 64 out of 165 countries assessed for Lack of Resilience. El Salvador is less resilient than 62% of countries assessed. This indicates that El Salvador has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Guatemala ranks 44 out of 165 countries assessed for Lack of Resilience. Guatemala is less resilient than 74% of countries assessed. This indicates that Guatemala has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

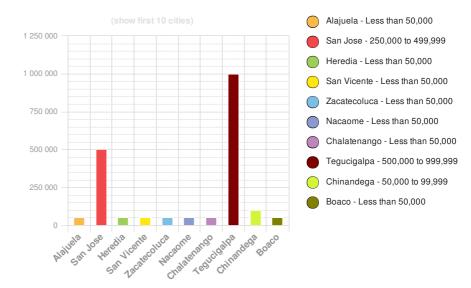
Honduras ranks 49 out of 165 countries assessed for Lack of Resilience. Honduras is less resilient than 71% of countries assessed. This indicates that Honduras has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Nicaragua ranks 64 out of 165 countries assessed for Lack of Resilience. Nicaragua is less resilient than 62% of countries assessed. This indicates that Nicaragua has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Regional Overview

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Population Data:


2011

Total: 17, 974, 516

Max Density: 57, 050(ppl/km²)

Source: iSciences

Populated Areas:

Risk & Vulnerability

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Multi Hazard Risk Index:

The Multi Hazard Risk index assesses the likelihood of losses or disruptions to a country's normal function due to the interaction between exposure to multiple hazards (tropical cyclone winds, earthquake, flood and tsunami), socioeconomic vulnerability, and coping capacity

Multi-Hazard Exposure Costa Rica ranks 112 out of 165 countries assessed for Multi Hazard Risk. Costa Rica has a Multi Hazard Risk higher than 33% of countries assessed. This indicates that Costa Rica has less likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure El Salvador ranks 48 out of 165 countries assessed for Multi Hazard Risk. El Salvador has a Multi Hazard Risk higher than 71% of countries assessed. This indicates that El Salvador has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Guatemala ranks 28 out of 165 countries assessed for Multi Hazard Risk. Guatemala has a Multi Hazard Risk higher than 84% of countries assessed. This indicates that Guatemala has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Honduras ranks 40 out of 165 countries assessed for Multi Hazard Risk. Honduras has a Multi Hazard Risk higher than 76% of countries assessed. This indicates that Honduras has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Multi-Hazard Exposure Nicaragua ranks 66 out of 165 countries assessed for Multi Hazard Risk. Nicaragua has a Multi Hazard Risk higher than 60% of countries assessed. This indicates that Nicaragua has more likelihood of loss and/or disruption to normal function if exposed to a hazard.

Source: PDC

Lack of Resilience Index:

The Lack of Resilience Index assesses the susceptibility to impact and the short-term inability to absorb, respond to, and recover from disruptions to a country's normal function.

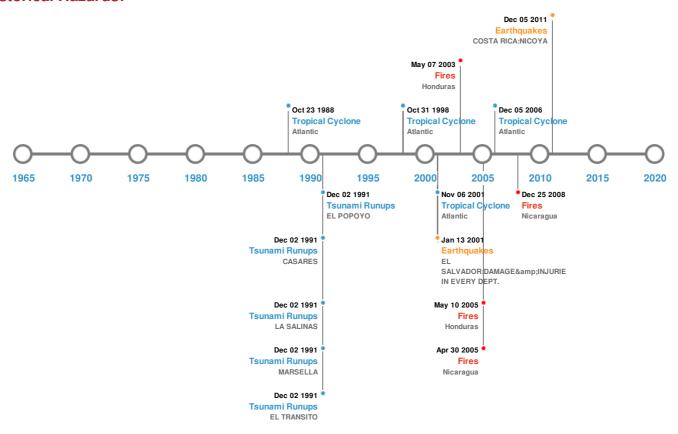
Costa Rica ranks 120 out of 165 countries assessed for Lack of Resilience. Costa Rica is less resilient than 28% of countries assessed. This indicates that Costa Rica has low susceptibility to negative impacts, and is less able to respond to and recover from a disruption to normal function.

El Salvador ranks 64 out of 165 countries assessed for Lack of Resilience. El Salvador is less resilient than 62% of countries assessed. This indicates that El Salvador has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Guatemala ranks **44** out of **165** countries assessed for Lack of Resilience. Guatemala is less resilient than 74% of countries assessed. This indicates that Guatemala has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Honduras ranks 49 out of 165 countries assessed for Lack of Resilience. Honduras is less resilient than 71% of countries assessed. This indicates that Honduras has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.

Nicaragua ranks 64 out of 165 countries assessed for Lack of Resilience. Nicaragua is less resilient than 62% of countries assessed. This indicates that Nicaragua has medium susceptibility to negative impacts, and is more able to respond to and recover from a disruption to normal function.



Source: PDC

Historical Hazards

Additional information and analysis is available for Disaster Management Professionals. If you are a Disaster Management Professional and would like to apply for access, please register here. Validation of registration information may take 24-48 hours.

Historical Hazards:

Earthquakes:

5 Largest Earthquakes (Resulting in significant damage or deaths)								
Event	Date (UTC)	Magnitude	Depth (Km)	Location	Lat/Long			
	07-Sep-1915 00:01:00	7.90	80	GUATEMALA	14° N / 89° W			
	29-Apr-1898 00:16:00	7.90	33	NICARAGUA: LEON, CHINANDEGA, MANAGUA	12° N / 86° W			
*	13-Jan-2001 00:17:00	7.70	60	EL SALVADOR: DAMAGE & INJURIES IN EVERY DEPT.	13.05° N / 88.66° W			
	05-Oct-1950 00:16:00	7.70	60	NICARAGUA	11° N / 85° W			
*	05-Sep-2012 14:42:07	7.60	35	COSTA RICA: NICOYA	10.08° N / 85.31° W			

Source: Earthquakes

Volcanic Eruptions:

5 Largest Volcanic Eruptions (Last updated in 2000)								
Event	ent Name Date (UTC)		Volcanic Explosivity Index	Location	Lat/Long			
	ILOPANGO	01-Jan-0260 00:00:00	6.00	EL SALVADOR	13.67° N / 89.05° W			

Event	Name	Date (UTC)	Volcanic Explosivity Index	Location	Lat/Long
	COSIGUINA	20-Jan-1835 00:00:00	5.00	NICARAGUA	12.98° N / 87.56° W
♦	SAN SALVADOR	01-Jan-1671 00:00:00	4.00	EL SALVADOR	13.74° N / 89.29° W
	SAN SALVADOR	01-Jan-1575 00:00:00	4.00	EL SALVADOR	13.74° N / 89.29° W
	MIRAVALLES	01-Jan-1525 00:00:00	4.00	COSTA RICA	10.75° N / 85.15° W

Source: Volcanoes

Tsunami Runups:

5 Largest Tsunami Runups								
Event	Date (UTC)	Country	Runup (m)	Deaths	Location	Lat/Long		
♦	02-Sep-1992 00:00:00	NICARAGUA	9.9	170	EL TRANSITO	12.05° N / 86.7° W		
♦	02-Sep-1992 00:00:00	NICARAGUA	8	-	MARSELLA	11.25° N / 85.9° W		
♦	02-Sep-1992 00:00:00	NICARAGUA	6.5	-	LA SALINAS	11.3° N / 85.92° W		
♦	02-Sep-1992 00:00:00	NICARAGUA	6	-	CASARES	11.65° N / 86.35° W		
♦	02-Sep-1992 00:00:00	NICARAGUA	6	-	EL POPOYO	11.3° N / 86° W		

Source: <u>Tsunamis</u>

Wildfires:

5 Largest Wildfires								
Event	Start/End Date(UTC)	Size (sq. km.)	Location	Mean Lat/Long				
	19-Mar-2003 00:00:00 - 07-May-2003 00:00:00	13.60	Honduras	14.08° N / 85.67° W				
*	27-Mar-2005 00:00:00 - 10-May-2005 00:00:00	12.40	Honduras	14.32° N / 85.63° W				
③	09-Mar-2005 00:00:00 - 30-Apr-2005 00:00:00	12.30	Nicaragua	13.9° N / 86.06° W				
③	12-Jan-2008 15:55:00 - 25-Dec-2008 16:20:00	8.60	Nicaragua	12.48° N / 87.05° W				

Source: Wildfires

Tropical Cyclones:

5 Large	5 Largest Tropical Cyclones								
Event	Name	Start/End Date(UTC)	Max Wind Speed (mph)	Min Pressure (mb)	Location	Lat/Long			

Event	Maree	22-Oct- \$?an?/@nd/Doite(OFO pv-1998 18:00:00	Max Wind Speed (ໜ້ວກໍ່)	Min Pressure (คิฟซ์)	Legation	37.16 ⊾4√∤29.9 5° W
	FELIX	01-Sep-2007 00:00:00 - 05-Sep-2007 09:00:00	167	929	Atlantic	12.69° N / 72.8° W
	UNNAMED	21-Aug-1949 12:00:00 - 05-Nov-1949 00:00:00	150	No Data	Atlantic	35.8° N / 61.95° W
	JOAN	11-Oct-1988 00:00:00 - 23-Oct-1988 06:00:00	144	932	Atlantic	10.35° N / 64.5° W
	MICHELLE	30-Oct-2001 00:00:00 - 06-Nov-2001 18:00:00	138	934	Atlantic	20.37° N / 75.4° W

Source: Tropical Cyclones

Disclosures

The information and data contained in this product are for reference only. Pacific Disaster Center (PDC) does not guarantee the accuracy of this data. Refer to original sources for any legal restrictions. Please refer to PDC Terms of Use for PDC generated information and products. The names, boundaries, colors, denominations and any other information shown on the associated maps do not imply, on the part of PDC, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

^{*} As defined by the source (<u>Dartmouth Flood Observatory</u>, University of Colorado), Flood Magnitude = LOG(Duration x Severity x Affected Area). Severity classes are based on estimated recurrence intervals and other criteria.